Approximation of bounds on mixed-level orthogonal arrays

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of Bounds on Mixed Level Orthogonal Arrays

Mixed level orthogonal arrays are basic structures in experimental design. We develop three algorithms that compute Rao and Gilbert-Varshamov type bounds for mixed level orthogonal arrays. The computational complexity of the terms involved in these bounds can grow fast as the parameters of the arrays increase and this justifies the construction of these algorithms. The first is a recursive algo...

متن کامل

An algorithmic approach to constructing mixed-level orthogonal and near-orthogonal arrays

Due to run size constraints, near-orthogonal arrays (near-OAs) and supersaturated designs, a special case of near-OA, are considered good alternatives to OAs. This paper shows (i) a combinatorial relationship between a mixed-level array and a nonresolvable incomplete block design (IBD) with varying replications (and its dual, a resolvable IBD with varying block sizes); (ii) the relationship bet...

متن کامل

Enumeration of Strength 3 Mixed Orthogonal Arrays

We introduce methods for enumerating mixed orthogonal arrays of strength 3. We determine almost all mixed orthogonal arrays of strength 3 with run size up to 100.

متن کامل

A note on full transversals and mixed orthogonal arrays

We investigate a packing problem in M-dimensional grids, where bounds are given for the number of allowed entries in different axis-parallel directions. The concept is motivated from error correcting codes and from more-part Sperner theory. It is also closely related to orthogonal arrays. We prove that some packing always reaches the natural upper bound for its size, and even more, one can part...

متن کامل

On a Grouping Method for Constructing Mixed Orthogonal Arrays

Mixed orthogonal arrays of strength two and size s are constructed by grouping points in the finite projective geometry . can be partitioned into   1, PG mn s   1, PG mn s       1 1 mn n s s         –1 n -flats such that each   –1 n flat is associated with a point in . An orthogonal array  1, n PG m s        1 1 mn n mn s s n s L s         can be constructed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Probability

سال: 2011

ISSN: 0001-8678,1475-6064

DOI: 10.1239/aap/1308662485